

Test Date: February 26th, 2024

embk.me/melraesrewind

BREED ANCESTRY

Doberman Pinscher : 100.0%

GENETIC STATS

Predicted adult weight: **67 lbs** Life stage: **Puppy** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-50839186 Swab number: 31220812803364

Test Date: February 26th, 2024

embk.me/melraesrewind

DOBERMAN PINSCHER

The Doberman Pinscher is a relatively new breed, bred around 1890 by Karl Friedrich Louis Doberman, a German tax collector. He aimed to breed a dog that would protect him during his tax collections. Doberman Pinschers are intelligent, loyal, and make for perfect companions as well as guard dogs. The Doberman is a mixture of many different dog breeds that includes Beauceron, German Pinscher, German Shepherd, and Rottweiler. The Doberman is a very athletic dog that often excels in agility courses. Doberman's are trainable and are listed as one of the top five smartest dogs.

Fun Fact

A Doberman named Cappy saved the lives of 250 U.S. Marines on Guam in 1944 by alerting them when Japanese troops were nearby.

Test Date: February 26th, 2024

embk.me/melraesrewind

MATERNAL LINE

Through Olive's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B45

Part of the large B1 haplogroup, this haplotype occurs most commonly in Yorkshire Terriers, Doberman Pinschers, Cocker Spaniels, and village dogs in Costa Rica.

Test Date: February 26th, 2024

embk.me/melraesrewind

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

No dark mask or grizzle (EE)

Test Date: February 26th, 2024

embk.me/melraesrewind

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (Dd)

Test Date: February 26th, 2024

embk.me/melraesrewind

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (Bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Likely saddle tan Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly patterned (NI) black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

Test Date: February 26th, 2024

embk.me/melraesrewind

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A) LINKAGE

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Test Date: February 26th, 2024

embk.me/melraesrewind

TRAITS: OTHER COAT TRAITS

TRAIT	RESULT
Furnishings (RSPO2) LINKAGE	
Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.	Likely unfurnished (no mustache, beard, and/or eyebrows) (II)
Coat Length (FGF5)	
The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the T allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral G allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."	Likely short or mid- length coat (GG)
Shedding (MC5R)	
Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.	Likely light shedding (TT)
Coat Texture (KRT71)	
Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats.	Likely straight coat (CC)

Test Date: February 26th, 2024

embk.me/melraesrewind

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Very unlikely to be Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely hairless (NN) to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.

Very unlikely to be hairless (NN)

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye Likely not albino (NN) pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion ND will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Test Date: February 26th, 2024

embk.me/melraesrewind

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: February 26th, 2024

embk.me/melraesrewind

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Not indicative of chondrodysplasia (normal leg length) (NN)

Less likely to have blue eyes (NN)

Blue Eye Color (ALX4) LINKAGE Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

Back Muscling & Bulk, Large Breed (ACSL4)

predictive as direct tests of the mutation in some lines.

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size.		
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
TRAITS: PERFORMANC	E	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with a	becially tolerant of low oxygen environments (hypoxia), such as those at least one A allele are less susceptible to "altitude sickness." This breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE		
dogs with no copies of the mutation likely to have high food motivation, w percentage, and be more prone to ob	bund primarily in Labrador and Flat Coated Retrievers. Compared to (NN), dogs with one (ND) or two (DD) copies of the mutation are more which can cause them to eat excessively, have higher body fat besity. Read more about the genetics of POMC, and learn how you can best (https://embarkvet.com/resources/blog/pomc-dogs/). We est.	Normal food motivation (NN)

Test Date: February 26th, 2024

embk.me/melraesrewind

HEALTH REPORT

How to interpret Olive's genetic health results:

If Olive inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Olive for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 256 genetic health risks we analyzed, we found 2 results that you should learn about.

Increased risk results (2)

Dilated Cardiomyopathy, DCM2

Von Willebrand Disease Type I, Type I vWD

Clear results

Breed-relevant (5)

Other (248)

Test Date: February 26th, 2024

embk.me/melraesrewind

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Olive, and may influence her chances of developing certain health conditions.

O Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Increased risk
O Von Willebrand Disease Type I, Type I vWD (VWF)	Increased risk
O Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MY07A)	Clear
Oilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
O Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
Registration: American Kennel Club (AKC) WS79735202	

Test Date: February 26th, 2024

embk.me/melraesrewind

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Olive. Review any increased risk or notable results to understand her potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Sernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Canine Multiple System Degen	neration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
⊘ Canine Multiple System Degen	neration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile	Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM	(PTPLA)	Clear
⊘ Cerebellar Hypoplasia (VLDLR,	Eurasier Variant)	Clear
🔗 Chondrodystrophy (ITGA10, No	prwegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (A	DAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2	2, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUE	BN Exon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUE	BN Exon 53, Border Collie Variant)	Clear
Ocllie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 I	Deficiency (C3)	Clear
Congenital Cornification Disord	der (NSDHL, Chihuahua Variant)	Clear
🔗 Congenital Hypothyroidism (TF	PO, Rat, Toy, Hairless Terrier Variant)	Clear
🔗 Congenital Hypothyroidism (TF	PO, Tenterfield Terrier Variant)	Clear
🔗 Congenital Hypothyroidism wit	th Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ocongenital Hypothyroidism wit	th Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocyto	openia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

Registration: American Kennel Club (AKC) WS79735202 Rembark

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Ongenital Myasthenic Syndrome, CM	AS (COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CM	IS (COLQ, Golden Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CM	IS (CHAT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CM	AS (CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness	s (LRIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness	s (RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
Oystinuria Type I-A (SLC3A1, Newfour	ndland Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australia	an Cattle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniatu	re Pinscher Variant)	Clear
Oay Blindness (CNGB3 Deletion, Alasl	kan Malamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German	n Shepherd Variant)	Clear
🔗 Day Blindness (CNGA3 Exon 7, Labrad	or Retriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, Germa	an Shorthaired Pointer Variant)	Clear
O Degenerative Myelopathy, DM (SOD14	۹)	Clear
O Demyelinating Polyneuropathy (SBF2	/MTRM13)	Clear
O Dental-Skeletal-Retinal Anomaly (MIA	A3, Cane Corso Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Ø Diffuse Cystic Renal Dysplasia and Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	nd Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (R	BM20, Schnauzer Variant)	Clear
O Disproportionate Dwarfism (PRK	G2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FA	AM83H Exon 5)	Clear
Oystrophic Epidermolysis Bullos	a (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullos	a (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1	1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOA	D (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
🔗 Early Onset Cerebellar Ataxia (SE	EL1L, Finnish Hound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM Delet	ion, Italian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, F	Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCA	N)	Clear
Exercise-Induced Collapse, EIC ((DNM1)	Clear
Factor VII Deficiency (F7 Exon 5)		Clear
Factor XI Deficiency (F11 Exon 7,	Kerry Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 E	xon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 E	xon 30, English Springer Spaniel Variant)	Clear
Sanconi Syndrome (FAN1, Basen	ji Variant)	Clear
Registration: American Kennel Club (AKC)	Kembark	

DNA Test Rep	port	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER	RESULTS		
⊘ Fetal-C	Onset Neonatal Neuroaxonal Dystroph	y (MFN2, Giant Schnauzer Variant)	Clear
🧭 Glanzm	nann's Thrombasthenia Type I (ITGA2I	3 Exon 13, Great Pyrenees Variant)	Clear
🧭 Glanzm	nann's Thrombasthenia Type I (ITGA21	3 Exon 12, Otterhound Variant)	Clear
🧭 Globoid	d Cell Leukodystrophy, Krabbe disease	e (GALC Exon 5, Terrier Variant)	Clear
🧭 Glycog	en Storage Disease Type IA, Von Gierl	ke Disease, GSD IA (G6PC, Maltese Variant)	Clear
🧭 Glycog	en Storage Disease Type IIIA, GSD IIIA	(AGL, Curly Coated Retriever Variant)	Clear
<u> </u>	en storage disease Type VII, Phospho glish Springer Spaniel Variant)	fructokinase Deficiency, PFK Deficiency (PFKM, Whippe	et Clear
<u> </u>	en storage disease Type VII, Phospho elhund Variant)	fructokinase Deficiency, PFK Deficiency (PFKM,	Clear
🧭 GM1 Ga	angliosidosis (GLB1 Exon 2, Portugues	se Water Dog Variant)	Clear
🧭 GM1 Ga	angliosidosis (GLB1 Exon 15, Shiba Int	J Variant)	Clear
🧭 GM1 Ga	angliosidosis (GLB1 Exon 15, Alaskan I	Husky Variant)	Clear
🧭 GM2 G	angliosidosis (HEXA, Japanese Chin V	'ariant)	Clear
🧭 GM2 G	angliosidosis (HEXB, Poodle Variant)		Clear
🧭 Golden	n Retriever Progressive Retinal Atroph	y 1, GR-PRA1 (SLC4A3)	Clear
🔗 Golden	n Retriever Progressive Retinal Atroph	y 2, GR-PRA2 (TTC8)	Clear
🧭 Goniod	lysgenesis and Glaucoma, Pectinate L	igament Dysplasia, PLD (OLFM3)	Clear
⊘ Hemop	bhilia A (F8 Exon 11, German Shepherd	Variant 1)	Clear
🕢 Hemop	bhilia A (F8 Exon 1, German Shepherd	Variant 2)	Clear

Rembark

Clear

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian Rid	geback Variant)	Clear
🔗 Hereditary Ataxia, Cerebellar Degenerat	ion (RAB24, Old English Sheepdog and Gordon Setter Varia	ant) Clear
Hereditary Cataracts (HSF4 Exon 9, Aust	tralian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAN	183G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSC	G1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39F	12 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (S	SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets	(VDR)	Clear
Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, W	leimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelia	n Bear Dog Variant)	Clear
C Ichthyosis (NIPAL4, American Bulldog Va	ariant)	Clear
Ichthyosis (ASPRV1 Exon 2, German She	epherd Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Varian	t)	Clear
O Ichthyosis, Epidermolytic Hyperkeratosi	s (KRT10, Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

O Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)

Rembark

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Inflammatory Myopathy (SLC2	25A12)	Clear
Inherited Myopathy of Great I	Danes (BIN1)	Clear
Inherited Selected Cobalamir	n Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (T	Type I) (FGF4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption	n (ACSL5, Australian Kelpie)	Clear
Junctional Epidermolysis Bull	losa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bull	losa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
🧭 Juvenile Laryngeal Paralysis a	and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
🧭 Juvenile Myoclonic Epilepsy ((DIRAS1)	Clear
🔗 L-2-Hydroxyglutaricaciduria, L	L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG)	34D)	Clear
Laryngeal Paralysis (RAPGEF6	6, Miniature Bull Terrier Variant)	Clear
🔗 Late Onset Spinocerebellar A	taxia (CAPN1)	Clear
Late-Onset Neuronal Ceroid L	Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1	(LPN1, ARHGEF10)	Clear
Leonberger Polyneuropathy 2	2 (GJA9)	Clear
🔗 Lethal Acrodermatitis, LAD (M	IKLN1)	Clear
Registration: American Kennel Club (AKC)	Fembark	

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Leukodystrophy (TSEN54 Exon 5, Standard	d Schnauzer Variant)	Clear
🔗 Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGCD, Bo	oston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SGCA	Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
O Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Terr	rier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coated	d Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syr	ndrome Type B, MPS IIIB (NAGLU, Schipperke Vari	ant) Clear
 Mucopolysaccharidosis Type IIIA, Sanfilipp Variant) 	oo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dach	nshund Clear
 Mucopolysaccharidosis Type IIIA, Sanfilipp Huntaway Variant) 	oo Syndrome Type A, MPS IIIA (SGSH Exon 6, New	Zealand Clear
 Mucopolysaccharidosis Type VI, Maroteau Variant) 	x-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniatu	re Pinscher Clear
Mucopolysaccharidosis Type VII, Sly Syndr	rome, MPS VII (GUSB Exon 3, German Shepherd V	'ariant) Clear
Mucopolysaccharidosis Type VII, Sly Syndr	rome, MPS VII (GUSB Exon 5, Terrier Brasileiro Var	riant) Clear

Rembark

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier King (Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Retriev	ver Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMT)	SL2)	Clear
O Myasthenia Gravis-Like Syndrome (CHRN	IE, Heideterrier Variant)	Clear
🧭 Myotonia Congenita (CLCN1 Exon 23, Aus	stralian Cattle Dog Variant)	Clear
🧭 Myotonia Congenita (CLCN1 Exon 7, Minia	ature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund	Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador R	etriever Variant)	Clear
Nemaline Myopathy (NEB, American Bullo	log Variant)	Clear
Neonatal Cerebellar Cortical Degeneratio	n (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures,	NEWS (ATF2)	Clear
O Neonatal Interstitial Lung Disease (LAMP	3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rott	weiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Sp	oanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (I	PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10	0 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Peristration: American Kennel Club (AKC)	<u>с</u> н	

Registration: American Kennel Club (AKC) WS79735202 Rembark

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Neuronal Ceroid Lipofuscino	osis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscino Variant) 	osis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire T	Ferrier Clear
Oculocutaneous Albinism, O	DCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, O	DCA (SLC45A2, Small Breed Variant)	Clear
🔗 Oculoskeletal Dysplasia 2 (C	COL9A2, Samoyed Variant)	Clear
Osteochondrodysplasia (SLC	C13A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (C	SOL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (S	SERPINH1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (C	COL1A1, Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Disc	order (P2Y12)	Clear
🔗 Pachyonychia Congenita (KF	RT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD	(PIGN)	Clear
	C	

 Registration: American Kennel Club (AKC)
 Compark

 WS79735202
 WS79735202

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Persistent Mullerian Duct Syndrome, PMDS	G (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelia	an Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scot	t Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedis	sh Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alas	skan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 E	xon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Variant) 	Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	i Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon 2	26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl S	Syndrome (BBS2 Exon 11, Shetland Sheepdog Varian	t) Clear
Progressive Retinal Atrophy, CNGA (CNGA1	Exon 9)	Clear

Registration: American Kennel Club (AKC)

Rembark

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Progressive Retinal Atrophy, crd1 (PDE6B, A	American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RI	PGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)		Clear
Progressive Retinal Atrophy, PRA3 (FAM161	A)	Clear
Progressive Retinal Atrophy, prcd (PRCD Ex	xon 1)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B E	xon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)		Clear
Proportionate Dwarfism (GH1 Exon 5, Chihu	ahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)		Clear
Pyruvate Dehydrogenase Deficiency (PDP1	, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, E	Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, B	eagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10,	Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, L	abrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, P	ug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Disease	e, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular De	ermatofibrosis (FLCN Exon 7)	Clear
Registration: American Kennel Club (AKC)	Rembark	

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Retina Dysplasia and/or Opti	c Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134	4B, Border Collie Variant)	Clear
Severe Combined Immunode	eficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunode	eficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (Pl	LP1, English Springer Spaniel Variant)	Clear
🔗 Shar-Pei Autoinflammatory D	bisease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (CC	DL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKF	P1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN	8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with N	Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with C	erebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with C	erebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Ex	kon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehy	ydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
⊘ Thrombopathia (RASGRP1 Ex	on 5, American Eskimo Dog Variant)	Clear
🔗 Thrombopathia (RASGRP1 Ex	con 5, Basset Hound Variant)	Clear
🔗 Thrombopathia (RASGRP1 Ex	xon 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrom	e, TNS (VPS13B)	Clear
Registration: American Kennel Club (AKC)	Rembark	

DNA Test Report	Test Date: February 26th, 2024	embk.me/melraesrewind
OTHER RESULTS		
Illrich-like Congenital Muscular Dystrophy	y (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Ullrich-like Congenital Muscular Dystrophy	y (COL6A1 Exon 3, Landseer Variant)	Clear
⊘ Urate Kidney & Bladder Stones (SLC2A9)		Clear
⊘ Von Willebrand Disease Type II, Type II vW	D (VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
⊘ X-Linked Hereditary Nephropathy, XLHN (C	OL4A5 Exon 35, Samoyed Variant 2)	Clear
⊘ X-Linked Myotubular Myopathy (MTM1, La	brador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal Atrophy 1, XL	-PRA1 (RPGR)	Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG, Corgi Variant)	Clear
⊘ Xanthine Urolithiasis (XDH, Mixed Breed V	ariant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mixed-I	Breed Variant)	Clear
Mast Cell Tumor		No result
Registration: American Kennel Club (AKC)	≻embark	

Test Date: February 26th, 2024

embk.me/melraesrewind

HEALTH REPORT

Increased risk result

Dilated Cardiomyopathy, DCM2

Melrae's Rewind inherited one copy of the variant we tested for Dilated Cardiomyopathy, DCM2 Olive is at increased risk for DCM2

How to interpret this result

Olive has one copy of a variant in the TTN gene associated with increased risk for DCM in the American Doberman Pinscher. This variant, also referred to as DCM2, is inherited in a dominant manner, meaning having one or two copies of this variant is thought to confer the same amount of risk. However, the variant is thought to have incomplete penetrance: That is, not all dogs with this variant will ultimately show signs of DCM. Moreover, the impact of this variant in other breeds of dog besides the Doberman has yet to be fully understood. However, if your veterinarian thinks Olive shows signs of having DCM based on their diagnostic testing, you now have the opportunity to discuss early treatment. Please consult with your veterinarian regarding a diagnostic and treatment plan for Olive.

What is Dilated Cardiomyopathy, DCM2?

DCM is the most common acquired heart disease of adult dogs. The heart has two heavily muscled ventricles that pump blood away from the heart. This disease causes progressive weakening of the ventricles by reducing the muscle mass, which causes the ventricles to dilate. Dilated ventricles do not contract and circulate oxygenated blood well, which eventually leads to heart failure.

When signs & symptoms develop in affected dogs

This disease can rarely be seen in puppies and young adults. It is typically seen in middle aged to older dogs.

Signs & symptoms

In the early stages of DCM, you will likely not notice any changes in your dog. DCM typically presents at the end stages of the disease, when the heart is failing. Signs include weakness, cold toes and ears, blue-grey gums and tongue, and respiratory distress. If you see these signs, take your dog immediately to an emergency veterinarian!

How vets diagnose this condition

The earlier a diagnosis can be reached, the better the outcome. If you are concerned about your dog's heart, discuss it with your veterinarian who can run basic preliminary tests. They may recommend a visit to a veterinary cardiologist for a complete evaluation, including an ultrasound of the heart (echocardiogram).

How this condition is treated

Treatment is completely dependent on how advanced the disease is at the time of diagnosis. It can range from monitoring the patient periodically to intensive hospitalization at specialty veterinary practices.

Actions to take if your dog is affected

• The cause of this disease is multifactorial and not completely understood. Genetics, nutrition, infections and environmental exposures can all play a role in the development of DCM. In fact, DCM has recently been featured extensively in the news due to suspected nutritional deficiencies in some grain free diets.

Registration:

.

Test Date: February 26th, 2024

embk.me/melraesrewind

HEALTH REPORT

Increased risk result

Von Willebrand Disease Type I, Type I vWD

Melrae's Rewind inherited one copy of the variant we tested for Von Willebrand Disease Type I, Type I vWD Olive is at increased risk for Type I vWD

How to interpret this result

Olive has one copy of this variant in the VWF gene and will likely have decreased levels of vWF compared to a dog without this variant. However, they will have higher levels of vWF than a dog with two copies of this variant. There is a slightly increased risk of bleeding in dogs with one copy of the variant, particularly when other clotting issues are also present. Please consult your veterinarian for further diagnostic and care options.

What is Von Willebrand Disease Type I, Type I vWD?

Von Willebrand Disease (vWD) is a type of coagulopathy, a disorder of blood clotting. vWD is characterized into three types based on clinical severity, serum levels of vWF, and vWF multimer composition. Dogs with Type I vWD have low vWF levels, normal multimer composition, and variable clinical signs.

When signs & symptoms develop in affected dogs

This disease is typically diagnosed in puppies or young adults when they are spayed or neutered and have a problem with clotting. However, it can be diagnosed at any age.

Signs & symptoms

Affected dogs may show no obvious clinical signs or they may bruise easily and excessively bleed from small wounds. Affected puppies may bleed excessively from their mouth when teething.

How vets diagnose this condition

vWD is diagnosed through genetic testing and blood testing at a laboratory. Veterinarians may also nick a dog's lip with a sterile needle and time how long it takes for clotting to occur.

How this condition is treated

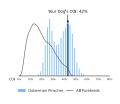
vWD cannot be treated, only managed. Preventing injuries is goal number one. If your dog requires surgery, your veterinarian should be warned that excessive bleeding may occur and blood products need to be on hand in case a transfusion is required.

Actions to take if your dog is affected

- Prevention is key! Minimizing the risk of trauma and informing your veterinarian so that surgeries can be carefully planned are the best ways to prevent a catastrophic outcome.
- Be aware of the location of the nearest emergency veterinary hospital in case of an accident.

Test Date: February 26th, 2024

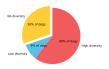
embk.me/melraesrewind


INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


42%

RESULT


No Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.